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fluid over an obstruction-forced modified K-dV equation

J.W. CHOI, S.M. SUN and M.C. SHEN

Center for the Mathematical Sciences and Department of Mathematics, University of Wisconsin, Madison,
WI 53706, USA

Received 8 October 1991; accepted in revised form 19 May 1992

Abstract. The objective of this paper is to study two-dimensional steady capillary-gravity waves on the interface
between two immiscible, inviscid and incompressible fluids of constant but different densities bounded by two
horizontal rigid boundaries with small symmetric obstructions of compact support at lower and upper boundaries.
The derivation of the forced K-dV equation, which has been extensively studied in the literature for a single-layer
fluid, fails for a two-layer fluid when the density ratio of the two-layer fluid is near the square of the depth ratio. By
a unified asymptotic. method, a forced modified K-dV equation is derived and new types of steady solutions are
discovered. Numerical results of various solutions are also presented.

1. Introduction

In this paper, we consider two-dimensional flow of two immiscible, inviscid, and incompress-
ible fluids of different but constant densities with surface tension at the interface and
bounded by two horizontal rigid boundaries. Assume that two two-dimensional objects are
moving at some constant speed ¢ along the upper and lower boundaries. A coordinate
system moving with the objects is chosen so that the objects are stationary and the speed of
the two-layer fluid is ¢ far upstream. Now the problem is reduced to the steady flow of a
two-layer fluid past obstructions at the boundaries.

First let us briefly review the steady flow of a one-layer fluid under gravity past an
obstruction in the absence of surface tension. Numerical studies of steady flow past a
semi-circular obstruction were carried out by Forbes and Schwartz [1], Vanden-Broeck [2],
and Forbes [3]. They discovered two critical values F_, F,_ of the Froude number F = c’gh,
where g is the constant gravitational acceleration, 4 is the constant depth of the fluid far
upstream, F_ <1 and F, > 1. For F < F_, there exists only one branch of solutions of the
free surface elevation 7(x), which is almost zero behind, but periodic ahead, of the
obstruction. In F_ < F<F,, there exists no steady flow. For F> F_, there exist two
symmetric solutions of the solitary-wave type. One approaches the uniform flow far
upstream and the other approaches the solitary wave solution for a fluid with constant depth,
as the obstruction size tends to zero. There also appears another type of solution, which is a
hydraulic fall connecting two constant states at x = *«. An asymptotic theory for small-
amplitude steady flow past an obstruction has been developed by Shen, Shen and Sun [4] and
Shen [5] and the model equation governing the flow is the Forced Korteweg-de Vries
equation (FK-dV)

mon, + mimgm, + mym,,, = b (x),

where x is the horizontal distance, m;, m;, m; are constants and z = b(x) is the equation of
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the obstruction. Many results obtained before can be recovered by the solutions of the
FK-dV. Justification of the asymptotic theory has been given by Mielke [6], Shen [7] and Sun
and Shen [8].

For the problem considered here, a FK-dV can also be derived. However, besides the new
Froude number F, we have three more parameters in our problem, the depth ratio A, the
density ratio p and the Bond number 7, a nondimensional surface tension coefficient. When
p= h2, m] vanishes and the derivation of the FK-dV fails. To overcome this difficulty, a
unified asymptotic method is developed and a forced modified K-dV equation (FMK-dV)

2
mOnx + mynn, + manxx = bx(x) >

is obtained if we assume that the upper obstruction is zero and lower obstruction is z = b(x)
which is a positive symmetric function of x with compact support. The objective of this paper
is to study possible solutions of the FMK-dV.

This paper is organized as follows. In Section 2 we formulate the problem and derive a
FMK-dV equation by means of a unified asymptotic method. In Section 3, there are two
sections. In Section 3.1 we study the case 7> 7, but not near 7, and consider the subcritical
and supercritical cases separately. Several existence theorems are proved and numerical
results are also presented. In Section 3.2 we assume 7 < 7, but not near 7,, and study the
subcritical case. An existence theorem is proved and numerical results are given. In Section
4, a detailed summary of our results is given.

2. Derivation of the modified K-dV equation with forcing terms - FMK-dV

We consider an irrotational flow of two immiscible, inviscid and incompressible fluids of
different but constant densities p**, where * correspond to the upper and lower fluid
respectively, with surface tension T* at the interface and bounded by two rigid boundaries.
Since a two-dimensional object at the boundaries is moving with a constant speed c, we
choose a coordinate system moving with the object so that in reference to the coordinate
system, the object is stationary and the fluid flow becomes steady with the speed ¢ of the
two-layer fluid far upstream (Fig. 1). Then the equations of motion and boundary conditions
are:

in Q*%,
ul+wh =0, €8
WU+ wr el = —prFprT 2
u*:w*t+ kT kE *i/ *E _ . 3
e TWIWIT = —pilp* T — g (3)

at the interface z* = n*,
u* nf —w** =0, (C))

p*" = p*T =Tl (1 + (i)Y (5)
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Fig. 1. Fluid domain.

at the rigid boundaries z* = H**(x*),
wrE — u* H T =0, (6)

Here (u**, w*™) are velocities, p™ are densities, p*~ are pressures, g is the gravitational
acceleration constant. Now we need to nondimensionalize these equations (1) through (6),
and let L be the horizontal scale length and H = |H* ™ (—=)| be the vertical scale length by
assuming that H* (—«) exists. Assume that ¢ = H/L <1, which is so-called long wave
assumption, and introduce the following nondimensional variables:

(x,2)=(x*/L,z*/H), (u, w) = (w*, e 'w*),

1
Vg/H
n=¢ 'n*/H, p* =p*“IgHp*", T=T*/p* gH*,
p =p *lp *, hi =H**/H .

In terms of them, (1) to (6) become:

in Q7
u: +w: =0, (7)

wiul+wiu;=-pilp”, (8)
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Eutwi+ efwtwi=—pilpT—1; )
at the interface z = en,

eu n, —w =0, (10)

pT~p =e&Tn,/(1+e'n)"; (11)
at the rigid boundaries z = h;,

w* —h, =0, (12)
where p~ =1 and p* = p. Then we let h; (x) = h* + £’b™(x) with the conditions that A* are
constants, h~ = —1, h=h", and b*(x) have compact supports.

In the following, we use a unified asymptotic method to derive the equation for n(x).
Assume that u, w and p possess an asymptotic expansion of the form

d’(x’ z, E)~¢0+ E¢1+ 52¢2+ T
with u; (x, z) = u, = constant, p; = —p~z and w; =0 and use the condition
eu'n, ~w =gun, —w, (13)

at z = gm instead of the condition (1). Substituting the asymptotic expansions of u, w, p into
(7) to (9) and (11) to (13), and comparing orders of ¢, we can obtain a sequence of
equations and boundary conditions for the successive approximations of the equations (7) to
(9) and (11) to (13). The first order approximation is:

inh™<z<0and 0<z<h",

u;, +wi, =0, (14)

Uolt, = —Prlp” (15)

p1. =0, (16)
at z =0,

wy —w; =0, (17)

pi —pi +1(po. —Po:) =0, (18)
at z=h",

wi =0. (19)

(16) implies that p; are functions of x only. We express p; = f “(x), and from (14), (15),
and (19), it follows that
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wi=(z—h")f;(X)/(uep™). (20)
From (17) and (18), and using that fact that n| __. =0, u; | __. = A,, we obtain

=" 1(uep ™ NP = p YA I(ugp™) = h™/(ugp N)m , (21)

pi=cim, (22)

c;=h"(p —pNp th"),ci=ci+(p"—p7),

uy =(=cymlugp™) + Ay, (23)

wr =(z—h%)cin/(ugp”). (24)
By using a similar method, we can find the expressions for

u; (x, z), w; (x, 2), p; (%, 2), uj (x, z), and wj (x, 2)

with u} (x = —=) = A. Note that here to find u; (x, z), w; (x, 2), p; (x, z) fori=1, 2, 3, we
only use the equation (13) instead of (10). (10) holds if we let, at z = &n,

eu n,—w =0. (25)
From (25) and the asymptotic expansion of 4 , w, we have at z =0,

_ 1 1 _
upm, —wy +e(u; m, —mw, —w,)

+ &% (uy M+ MU, = Wi Wy, — wi) + O(e7) =0, (26)
We call u, the critical speed if the zeroth order term of (26), u,n, — w;, vanishes. Thus

uz=h(1-p)l(p+h). (27)

Then put u; , w; , i=1, 2, 3 into (26) to have the following equation for n(x),

20, +3(1— p)(p — 1*) I(uy(p + h)* ),
+ E(Alnx + A2nnx + A377277x - uObx_ - (uob; - uOb:/uﬂ + A4nxxx)
= 0(&?), (28)
where
A =22-2Aul,
A,=(5+3p(p—D(A+h)(p+h) A,
A;=6p(1— p)(1+ k) (uy(p + h)’) >0,
A, = hu,(3T/ul —(1—ph))/3(p + h).
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If we used the long wave approximation as discussed in [4] and [5], we would obtain the
forced K-dV equation

201, +3(1 = p)(p — B*) /(ug(p + B)*ym,
+ (huto(3TIu2 = (1= ph)) /3(p + h)M,y,, = gh; + (ugh; — ugh? ) Iy

The nonlinear term in this equation becomes zero when p = h*> Thus the forced K-dV
equation studied in [4] and [5] fails when p is near h°. Since the case for p not near h* has
been studied in [4] and [5], in the following we assume p = h> + £0”” and ¢ = u, + £’A which
implies A, =0 and is the critical speed to have the long wave approximation. Finally we
obtain the so-called forced modified K-dV equation (FMK-dV);

20, + Ay, — ugh, — (ugh, — ugh? ) luy+ A,m,,, =0.
As observed from the above equation, if b, = (u, + 1)b_ , the effects due to b (x) and b™ (x)
cancel each other. We assume both b"(x) and b (x) are symmetric functions with compact
support. For simplicity, we may just consider the case b, =0 and b (x) #0 so that the
effects of b™(x) and b~ (x) will not cancel each other. Then after omitting higher order terms
the equation (28) becomes

20, + Ayn'n, + Am,,, = Cb,(x) (29)

where C=u, + 1.

3. Forced modified K-dV equation

Let 7= T/u}. We divide this section into two parts according to 7> 7,=(1+ ph)/3 and
T<T,.

3.1. Assume 7> 7, but not near 7, and rewrite (29) as

Newr = —@1M'M, + @M, + azb, (30)
where

a, =6p(1— p)(1 + b)Y/ (hul(r — 7)(p + h)’) >0,

a,=—2A(p + h)/(huy(t — 15)) ,

a, = (uy+1)(p + h)/(huy(t~ 1)) >0.
Integrating (30) from — to x gives

N = —a;m13+ ayn + ab(x) . (31)
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When b(x) =0 and A <0, the equation (31) can be solved directly and a solitary wave
solution of the modified K-dV equation [9] is given by

1(x) = £(=2Aug(p + h)/(p(1 = p)(1 + h)*))'"? sech((—2A(p + h) /(huy(r — 7)))" *x) .

(32)
In this section, we shall assume b(x)#0 and consider two cases, A <0 and A >0.
Case 1. Subcritical case A <0 (a,>0)
We look for a solution 7(x) such that A <0 and
: ( d )" .

|11|-I—nm ax nx)=0 for j=0,1,2.
Integrating (30) from — to x, it follows that

a,n—m, =an/3+ b,(x), (33)

where b,(x) = —a,b(x).

It is not difficult to show that (33) has a symmetric solution which decays exponentially at
|x| =  for large a, analytically by using contraction mapping theorem and this solution will
go to zero as b,(x) tends to zero [10].

Assuming b(x) =0 for x> x, and x < x_ with x, > x_, we shall construct all solutions of
the equation (33) in the following ways. First find appropriate solutions for x >x, and
x < x_ since in these regions b(x) =0 and we can find the exact solutions of (33). Then by a
matching process at x = x, and x = x_ and using numerical computation, we can obtain a
solution for all x.

First we attempt to find a periodic solution of (33) when b(x) = 0. Assume 7(x) and 7, (x)
are given at some point x =x, and n(x,) =, n,(x,) = B. We multiply n, to (33) and
integrate the resulting equation from x, to x > x, to have

(n, ()’ = —a,n"6+a,n’ +d=f(n),

where d = 8>+ a,a*/6 — a,a’ To find the solution of this equation, we consider the cases
d >0, d=0, and d <0 separately. If d >0, f(n) can be factored as

f) =(=a,/6)(n’ = &)(n" — &),

where,
_ 3a,+3Va; +2a,d/3
0 a] s
3a, -3V a5 +2a,d/3
gl = >
a,

with ¢ <0< £,. Hence

1/2

n=§&, cosd,
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where
¢
Y(x - xq) = LO (1— k*sin® 0)7'2d6, ¢, = cos '(a&;'"?),
y=(a:(& — gl)/6)1/2’ K = E/(&—§)<1.
It is clear that dx/d¢ >0. Hence 7(x) intersects the x-axis repeatedly. Suppose {x,} is the
P y. Sup

set of points where 7n(x;) =0 for all i and x, < x, < x, <x,<....Then by assuming x, as the
corresponding point of ¢ =2nw + «/2 for some n€ Z,

Xit2 2nm+5m/2
L n(x) dx = J (&)'"? cos ¢p(dx/d¢) d¢

2nm+wi2

2nm+5w/2
- (&) " cos (1~ K sin’ ¢)"'2 dg

nw+mw/2
27
=&yt L sin ¢(1— k% cos® ) "2 do

=&y 7! j_ sin (1~ k*cos® ¢) V'*d¢p =0.

Hence the mean value of this solution 7(x) over one period is zero. If d =0, (33) has a
solution in the following form,

n(x) = =(—2Au,(p + h)3/(p(1 —p)1+ h)z))uz sech((—2A(p + k) /(huy(r — TO)))1/2x) '

If d <0, a5 +2a,d/3>0 and f(n) =0 has two distinct roots. In this case, we multiply 40’ to
(33), to obtain

(v,)’=-2avY3+4a,0° +4dv=g(v), v=7". (34)
f(v) =0 has three different roots

_ 3a,+3Va; +2a,d/3

0 )
a,

3a, —3Va5 +2a,d/3
§1 = s

a,

£=0, §&>&6>6¢.
The solution of (34) can be expressed as
v=¢§, cos’ep + '3 sin® ¢,

where

¢
(y “2x=L (1—K*sin®0)"% dg,
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y=3(& —¢,)/3>0, K =(&—6)(6 - &) <L

It follows that n = — = (&, cos’r + ¢, sin” 7)'/. If a® + 2a,d/3 =0,
(v,)’ = —a,v(v — 3a,/a,)" .

Therefore the only possibilities are v =0 or v =3a,/a, i.e. n(x) =0 or y(x) = =(3a,/a,)"”. If
a; +2a,d/3<0,

(v,)*=—a,u(y>+ (v—8)")forsome vy, 5 .

Hence only =0 is possible. Therefore we can find all solutions analytically for (33) with
b(x) = 0. But when x approaches to —o, we assume that n tends to 0. Thus only n=0 or
d =0, which corresponds to a solitary wave solution, is possible.

Now we need to prove the existence of the solutions of (33) in x_<x<x_. In the
following, we show that for any initial values of a solution at x = x_, the solution always
exists in [x_, x,] and is a C*-function. Thus by a numerical computation, we can always find
the solution in the interval as accurately as desired. The error estimates for many numerical
methods to compute the solution of an ODE require the boundedness of the solution. We
state the theorem and prove the boundedness of the solution.

THEOREM. 7, =—a,n/3+a,n—b,(x), a,, a,>0, with initial data n(x_)=a and
n,(x_) = B has a C*-solution for x_<x<x,.

Proof. It suffices to show that 7 is bounded. For simplicity, we can assume x_ = —1,
x* =1. By multiplying 7, to the given equation and integrating it from —1 to x,

(n.)* = —(a,/6)n*(x) + a,n"(x) + (n,(~1))* + (a,/6)(n(= 1))’
—ay(n(-~1)) ~2 [ nb, (0 dr
=—(a,/6)(n* —3a,/a,)* + B* + (a,/6)a" — a,a’ + 3a3/(2a,) — 2 f_l b,(t)n'(¢) dt .

Hence

X

my=n+2[ |b@molasN+ |

L @b, + ' (0f78) dt , (35)

by Young’s Inequality, where N = B8° + (a,/6)a* — a,a’® + 3a5/2a, and ' = d/dt. Suppose 7
is not bounded in [—1, 1]. Then there exists a point x, €[—1, 1] such that |n|—> as x
approaches x,. Then x, > —1+ ¢ for some & >0 by the existence theorem in the theory of
ordinary differential equations. Let x, = inf,{£ €[~1, 1]|[lim,_,,-n(x)| = *}. Choose & so
that —1< 8 < x,. Then the solution of the given differential equation exists in [—1, 8], and
by (35), m.(x)><(1/8)(6 +1)sup_,.,s(In. (> +16M*)+ N for x€[-1, 8]. Hence
SUP_ <5 |m (X)|> < 16M7 + N/(1— (8 +1)/8) <16 M* + 8N/7 for every & with —1 < § < x,.
Thus 7n'(x) is bounded when x €[—1, x,], and n(x) = a + [, n'(x)dx is bounded which
contradicts to |n(x)| 1 = as x— x,. Therefore, we can conclude that n(x) is bounded in [—1,
1] and the solution of the given equation exists.
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We have shown that the solutions of (33) always exist for x € R and are bounded. Since we
assume that n(—«) =0, only two types of solutions, n(x) =0 and solitary solutions, can
appear for x < x_. In the following we use numerical computation to find various solutions of
(33) when the bump b(x) is given by b(x) = R(1 ~ x*)""* for |x| <1 and b(x) =0 for |x|=1
where R is a given positive constant. We divided these solutions into symmetric soliton-like
solutions and unsymmetric solutions.

(1) Symmetric soliton-like solutions
Let

n(x) = =D sech((~2A(p + k) (hug(r = 7)) *(x = x,)
D = (=2uy(p + hYI(p(1 = p)(1 + B2, (36)

where x, is a phase shift. To find a solution in |x| <1, we need only consider (33) in
—1=<x<0 subject to (n'(x))’=—a,m76+a,n’ at x=-1 and 7'(x)=0 at x=0. This
problem can be solved numerically by a shooting method and the phase shift x; is then
determined by (36) for x = —1. The numerical results are presented in Figs. 2 and Fig. 3. In
Fig. 2 we show the relationship between A =n(0) and A where R=1. Three typical
soliton-like solutions corresponding to A = —3.0, R =1.0 are shown in Fig. 3.

(2) Unsymmetric solutions
Assume n(—) =0 and 7 is periodic ahead of the bump. We have two choices for x < —1,

one is =0 and the other is

n(x) = = D sech((— A(p + k) /(hug(r = 1)) *(x = %)),
D = (~Aug(p + hYI(p(1 = p)(1+ h)2)" . (37)

0=

2~

T T T T
3 2 -1 0

Fig. 2. Relationship between 7(0) and A with T=3, p =0.25, and & =0.5. 1. Positive Solitonlike solutions. 2.
Positive Soliton solutions without forcing. 3. Negative Solitonlike solutions. 4. Negative Solitonlike solutions
without forcing.
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n(z)

“]

<

.14

Fig. 3. Symmetric Solitonlike solutions with 7=3, A= -3, p =0.25, and h =0.5.

Since we have established the existence of a solution of (33) for [x_, x,] and derived the
possible solutions of (33) in [x, , <) for any values of n(x") and n’(x "), we can solve (33) by
Runge-Kutta Method and use (37) or zero for (—, —1].

We present the numerical results of this case in Figs. 4—6. Figure 4 shows the second type
solutions which have (37) as their solutions in (—%, —1]. In Fig. 5 we show the relationship
between 7(0) and A when b(x) = (1 — x*)"/? for different values of n(—1). We also consider a
third type solution which is zero for x < ~1 and periodic for x=1. A typical solution
corresponding to A = —2, b(x) = (1 — x)'’? is presented in Fig. 6.

n(z)

2]

1 T T

0 5 z
Fig. 4. Typical second type solutions with A=~3, T=3, p=0.25, and 2 =0.5. 1. Mean depth is 0 behind the
obstruction. 2. Mean depth is not 0 behind the obstruction.
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24 0

1~

T T T
-2 [} 2

Fig. 5. Relationship between 7n(0) and A for different n(—1) with T=3, p =0.25, and h =0.5. 1. n(—1)=0.5 and
7,(x)>0. 2. 9(=1) = 0.5 and 7,(x) <0. 3. n(—1) =0 and n,(x) = 0. 4. n(—1) = ~0.5 and 71,(x) >0. 5. n(—1) = —0.5
and 7 (x)<0.

2 n(z)

1

-2

L T T
0 5 0w

Fig. 6. Typical third type solution when A <0 with T=3, A= -2, p=0.25, and h =0.5.
Case 2. Supercritical case A >0

Similar to the method used in case 1, we first consider homogeneous equation

N =—a;n/3+am, (38)
with a, >0, a, <0 since A >(0. The bounded solutions of (38) can be found explicitly by
using elliptic functions. We assume x_ =—1 and x, =1. Let n(1) = a and 7,(1)= 8. We
multiply 1,(x) to (38) and integrate the resulting equation from 1 to x >1 to obtain
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(n,(x))* = —(a,/6)n" + a,m* + d
=—(a,/6)(n" = &)(n* — &), (39)
where
d=B*+(a,/6)a’ — a,a’>0,

_ 3a,+3Va;+2a,d/3

¢ >0,
0 ‘11
_ 3@ +2a,d3
£ = 3a,—3 (;2 +2a,d/3 <0.
1

The solution of the equation (39) is given by

n=£/"cos o,

where
4
Y= x) = [ (1= Ksin )72 0, ¢y =cos ;™).

y=(a,(& — fl)/6)1/2 > K= &/(&— &) <1.

Thus for any a and B, a solution of (38) is periodic. We can show that the mean value of 7
over one period is zero by a similar method as in case 1. For x < —1, the only solution is
n(x) = 0 since n(—«) =0.
Also as in case 1, we can show that if n(—1) and 75,(—1) are given, then
77xx=—al"73/3+a277_b1(x), (40)

has a bounded C*-solution in [—1, 1].

Having established the existence of the solution, we can find the global solution of
M., = —a,n°/3+ a,n — b,(x) by using a shooting method to connect zero solution behind the
bump and periodic solution ahead of the bump. We present the numerical result in Fig. 7,
where b(x) = (1+ x*)"'? for |x| <1 and b(x) =0 for |x|>1, and A = 1.0.

3.2. In this section we consider (29) for the case 7 <1, but 7 is not near 7,. If we let the
support of b(x) be in [x_, x,] and integrate (29) once, by n(—«) =7,,(—*) =0 we obtain

7Ixx=A1773—A277+aab(x)’ (41)
where

A, =6p(1—p)(1+ h)I(hul(r,— 7)(p + h)*)>0,
A, ==2A(p + h)/(huy(my — 7)),
ay=—(uy+1)(p + h)/(huy(ry — 7) <0.

First let us consider the case A <0, that is, A,>0. When b(x) =0, we consider an initial
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n(z)

0.5 -

05

T T T T T
-5 0 5 10 2

Fig. 7. Typical third type solution when A>0 with 7=3, A=1, p=0.25, and £ =0.5.

value problem for (41) with initial value 7n(x,) = «, n,(x,) = B. Then by integrating it from
X, tox>x_,

(m,(0))* = (A, /2m(x)* — A,m(x)* +d where d=pB>~(A,/2)a*+ A,a”. (42)

If @ = B =0, then (42) has the trivial solution n(x)=0. If A2 —2A4,d =0, then (42) has a
solution n(x) = +(A,/A,)""* tanh A,x/2. If A —2A4,d>0,

(A1/12)n(x)" = Aym(x)” + d = (A,/2)(n" = &)(n" — &)
where
£=AJA + (A5 -2A,d)"1A,, & =A,A,~(A:-24,d)"YA,.

Hence, the solution of (42) is the following: When &,> &, >0, n(x) = £¢.'%sin ¢, where

¢
(A1§0/2)1/2(x — x+) = J¢ (1 - k2 sin 6)—1/2d6 ,
0
do=sin"' (at['?), K =¢/¢<1.

This solution n(x) tends to 0 as £, —0". When &> 0> &, n(x) = £;'* cos ¢, where

¢
YE=x) = [, (1= Ksing) o, y=(A,(& £/,

do=cos (at,?), K =£1(&-£)<1.

This solution n(x) tends to (24,/A,)"*sech(A}*x — ¢), where ¢ is a phase shift de-
termined by initial values, as ¢, —>07. If A3 <2A4,d, n,(x)=*(d, + (4,/2)(n°(x) + ¢,)*)""?
for some d, >0 and the solution is unbounded.
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To find the solution of (41) in [x_, x.], we can use the contraction mapping theorem to
show that if —A is large enough, (41) has bounded C>-solution in [x_, x,]. Hence, by using
the matching process as before, we can find the solution for all real x.

Next we consider the case for A >0, that is, — A, is positive in (41). Let us study the
following equation:

nxx = A1"13 - A2n’ A] >09 —A2>Os n(x+)= a, nx(x+)= B ' (43)
We integrate (43) from x, to x > x, to obtain
ne=(A,/2m" - A,n’ +d,

where d=8"— A,a"2+ A,a’ Also if n(x,)=ea,, n.(x,)=p8,, then d=B}— A, a}/
2+ A,a; for all x,=x,. If d>0, then n’(x) =d for all x=x, and hence n(x) diverges.
Also if d =0, then n# 0 unless 7 =0. Therefore without loss of generality, we assume that
n(x) >0 for all x> x,. By (43), 7, (x)>0. Thus 7,(x) increases with x and 7, (x) <0 by
boundedness of mn(x). Hence =7 (x)—0 and =, (x,)—>0 for some x,—>, and
n(x)— constant =0 as x— . Then by (43) again n(x,)— 0 which means d=0. If d=0,

n(x) = (24,/4, — 2A,/A )1+ Y’ f(x) /(1 - y*f(x)""?,
fx) = exp(=2(— A4,) *(x - x,)),

where y = ((a® — 2A2/A1)”2 —(~-2A,/A,)""?) la. We can easily see n(x) tends to 0 as x—
in this case. By a numerical calculation we find that if x_ = —1 and x, =1 with b(x) as
before and n(—1) =7,(—1) =0, then 4 is always positive and no bounded solution exists.

The numerical results of these cases are given in Figs. 8 to 12. In Fig. 8 a hydraulic fall
solution is given, which is a limiting solution of Fig. 9, where a typical periodic solution is
presented. Figure 10 presents a one-hump solution which is another limiting solution of Fig.
9. Figures 11 and 12 show multi-crest solutions which take place as A decreases.

n7(z)

0~

0.5

T T T
.1 0 1 =

Fig. 8 Hydraulic Fall solution with 7=10"> A= ~2.165817, p =0.25, and A =0.5.
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04

i | I I T 1
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Fig. 9. Typical third type solution when 7 <7, with T=10">, A= -3, p =0.25, and A =0.5.

0 =)
-0.2
04 -
06
08
| ¥ T T T T I
4 2 0 2 4 T

Fig. 10. Symmetric solution with one crest with T=10"> A = —2.26245, p=0.25, and h=0.5.

4. Conclusions

Our results are summarized as follows:
The forced modified K-dV equation (FMK-dV)

20, +6(p(1 = p)(1+ h)/(uy(p + B) D00, + hug((r = 1)/ (p + h))m,,., = (4o + )b, (%),

which describes the long wave approximations of the solutions of exact equations for a
two-layer fluid in the critical cases with p near h°, possesses the following possible solutions.
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7(z)

0.1 -
0.2 ~
T T T I I

4 2 0 2 4

Fig. 11. Symmetric solution with two crest with T=107% A = —4.457567, p =0.25, and h =0.5.

o] 7=

<0.05 ~{
0.1 —
T T T t T

T 1
-4 2 0 2 4 z

Fig. 12. Symmetric solution with three crest with T=10"> A = —9.128716, p =0.25, and h =0.5.
I > T

Case 1. Subcritical case A <0

There appear three types of solutions. The first type consists of symmetric solitary wave
solutions which tend to zero as |x|— . For each A less than some critical value, there are
always three one-crest solutions, one with positive amplitude and the other two with negative
amplitude. The amplitude of the positive one-crest solution is larger than that of the positive
free solitary wave, while the amplitude of the negative free solitary wave is in between the
amplitudes of the two remaining negative symmetric solutions. Note that the modified K-dV
equation without forcing possesses two solitary wave solutions with different signs, which are
called free solitary waves. There are also positive two-crest symmetric solutions. However,
their numbers and amplitudes are very sensitive to the change of A and the size of the
obstruction and exhibit a rather chaotic behavior.
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The second and third types consist of unsymmetric solutions. The second type un-
symmetric solution possesses part of a free solitary wave behind, and a periodic solution of
the MK-dV ahead of, the obstruction. For any A less than some critical value, two solutions
can always be found corresponding to the same initial value n(—x,) prescribed at the left
endpoint x = —x, of the obstruction support. The mean value over one period of the periodic
solution ahead of the obstruction is zero unless n(—x,) falls between the values of the two
negative symmetric solutions at x = —x,. The third type solutions are zero behind, and
periodic ahead of, the obstruction. The mean value of the periodic part of this solution is
always zero.

Case 2. Supercritical case A >0
Only third type solutions appear and the mean value of the periodic part is always zero.

II. r<7,

Case 1. Subcritical case A <0

As A decreases from A =0, we can only find unbounded solutions until a cut-off value of A is
reached. At the cut-off value of A there appears a hydraulic-fall solution. As A decreases
more, the third type solutions emerge. However, we have discovered a rather surprising
result that at discrete values of A there are multi-crest solutions without a periodic part
embedded in the third type solutions.

Case 2. Supercritical case A >0
There is no bounded solution for A >0 numerically.

In summary we consider the physical problem of steady state flow past a positive,
symmetric body at the horizontal bottom of a two-layer fluid with surface tension at the free
surface. The derivation of the FK-dV fails when p = A%, and by a united approach an
MFK-dV is obtained. Two parameters appear in the equation and can affect its solution
behavior. One is the parameter A, a measure of the deviation of the flow speed at far
upstream from the critical speed u,, and the other is the difference r — 7, = 7*. Mathemati-
cally we study different types of solutions which may appear in different regions of the A,
7*-plane. This investigation may help us understand the flow patterns under parameter
change in a two-layer fluid with obstructions at boundaries.
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